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ABSTRACT 

We discuss geometrical aspects of the consistency problem in 
Kaluza-Klein theories. 

1) The hypothesis that space-time may have more than four dimensions 
deserves the most serious study. This idea is usually connected with 
the papers by Kaluza [lJ and Klein [2J, as these authors were the first 
to implement in terms of physical concepts and mathematical equations 
the idea that nurtured the philosophers since long (see e.g. [3J, [4, 
Ch.XJ). The methods of Kaluza and Klein, who proposed to use a five-di­
mensional Riemannian metric for a unified description of Einstein's gra­
vity and Maxwell electromagnetism in four dimensions, were further de­
veloped with the invention of non-Abelian gauge theories [5-8J and, 
later, supergravity [9-10J. A new motivation for studying physics in 
higher dimensions, and also the way it can produce observable phenomena 
in our four-dimensional world, came with string and superstring theo­
ries which, as a rule, need for a consistent quantum formulation more 
than four (e.g. 26 or 10) space-time dimensions 1) 

1) We refer the reader to the review article [llJ for more information, 
references, and recent applications of the Kaluza-Klein ideas. 
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2) Accepting the hypothesis of more than four space-time dimensions 
one has to, consequently, take the extra dimensions seriously; other­
wise the theory has no more predictive power than an ad hoc built pro­
viso. Now, what it does mean "to take the extra dimensions seriously"? 
It means that ore has to find a convincing answer to the following 
question:"why the number of dimensions in the world we see under normal 
conditions seems to be four, and which (physical) conditions are neces­
sary for the extra dimensions to show up"? The physical mechanism (and 
its mathematical description) by which the number of "effective" (wha­
tever this term may mean) dimensions is reduced is known under the na­
me dimensiona~ r educt ion. Now, of course, there are many ways of, for­
mally, reducing the number of dimensions, for instance, one can simply 
forget about some of them or put the corresponding coordinates to some 
fixed values. However, if the extra dimensions are to be taken seriously, 
then the dimensional reduction must be, at least, consi stent. In the 
following we will make the word "consistent" into aprecise technical 
term, but first let us look at few examples. 

3) Consider an .N-body problem of Newton's gravitation. Here the number 
of dimensions can be consistently reduced from three to two. Indeed, 
once the initial conditions (positions and velocities) are restricted 
to a plane, z=O, then the motion will be planar forever. This of course 
does not explain why, for instance, our planetary system hppens to be 
nearly planar; nevertheless it tells us that it is consi stent to freeze 
one of the three space dimensions. The resulting two-dimensional' theory 
of gravitation is consistent with the original three-dimensional one. 
It is also worthwmile to observe that one could, in principle, redisco­
ver the third dimension by contemplating the force law of the effective 
planar theory; indeed, the Qffective planar force results from the po­
tential l/r, which is a solution of the Laplace equation in thr ee di ­

mensions but is rather unnatural in two. 
Similar considerations apply if the bodies are charged and act on them­
selves by, say instantaneous, electromagnetic forces. But there is no 
consistent reduction to two dimensions if magnetic poles are also allo­
wed. Indeed, for a generic initial planar configuration (exceptional 
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configurations may be, however, possible), the Biot-Savart law will ma­
ke the motion necessarily three dimensional. 

4) The above examples, although transmitting quite well the idea of 
consistent versus inconsistent reduction of degrees of freedom, should 
be taken only as a hint as to the situation occurring in a field theo­
ri). The best example of an inconsistent dimensional reduction in field 
theory is given by the "Ansatz" made by Kaluza and Kl e in: the reduction 
of a five-dimensional gravity to four-dimensional gravity and electro­
magnetism is inconsistent since generic solutions of four-dimensional 
Einstein-Maxwell equations cannot be interpreted as special solutions 
of Einstein's gravity in five dimensions. However, the situation chan­
ges if the content of the effective four-dimensional theory is enlarged 
just by one field - the Jordan-Thiry scalar field carrying the informa­
tion about space-time dependence of the radius of the internal space. 
We shall discuss this example later on in some more details. 

5) We will now make the term "consistent reduction" formally precise. 
To this end it is instructive to consider the mechanism of dimensional 
reduction as a particular case of a more general mathematical scheme. 
Let A be a function on a manifold F (with F possibly infinite dimensio­
nal Hilbert or Banach manifold). Let F~ be a submanifold of F. We will 
say that "the reduction from F to F~ is consistent with respect to A" 
i f every critical pointof the functi.on A restricted to F~ is also a cri­
tical point of A in F. In other words: if for every pOint ~EF~ such that 
(dA)(X)=O for all vectors X tangent to F~ at ~ , we automatically have 
(dA)(X)=O for all X tangent to F at ~. The most evident example of 
a submanifold F~ which is not consistent with A is to take for F one of 
the constant-value submanifolds for A: F~={~EF:A[~]=C}.Then, clearly, 
every point of F~ is a critical point for A restricted to F~ but, in 
general, not a critical point of A in F. 

2) Indeed, mechanics can be considered as a one-dimensional field the­
ory, so the reduction of some space dimensions of a mechanical system 
i s analogous to reduction of the number of field components rather than 
field's argumensts 
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In physical applications we can take for F a manifold of field configu­
rations of some physical system, and for A the action functional, usu­
ally constructed from some local Lagrangian density L. Then a reduction 
of field configurations from F to F~ can be interpreted as freezing of 
some degrees of freedom of the system to their constant values. Effec­
tively one obtains a reduced (or constrained) physical system with the 
action functional A~ which is induced from A by simply restricting its 
domain to F~. Such a freezing of some degrees of freedom and the cor­
responding reduction of the system from (F,A) to ' (F~,A~) is then said 
to be "consistent", or "consistent" with the dynamics" if every solu­
tion of the field equations of the reduced (or "constrained") system 
is also a solution of the field equations of the original system (cf. 
[12,13J). Since the solutions of field equations of a classical field 
theory are nothing but critical points of the actionfunctional, it is 
clear that the two concepts of consistency coincide. 

6) Let us now clarify some of the above points. In classical mechanics 
the action functional is a function on the space of all possible traj~c­
tories, and the trajectories which are the critical points of t~is fun­
ction are candidates for the classically observed motions - they satis­
fy the Euler-Lagrange equations. Similarly in field theory, the action 
functional is a function on the space of all possible space-time field 
configurations, and the configurations which are critical points of 
this function are those satisfying classical field equations. 
Let F be a manifold, thought of as the manifold of (continuous, or 
smooth) trajectories or field configurations of some physical system S 
living in a space-time manifold M, and let A: F + R be a function on 
F, thought of as representing the action functional of the system. Ty­
pically F will consists of smooth functions .p:M + R, and will be of 
the form 

A[.pJ = J L(.p,a.p) 
M 

where L(.p,a.p) is a Lagrangian density. (Of course, for the above action 
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function to have a meaning one has to take M compact. or cp of compact 
support. or to take some other appropriate measures; we will not enter 
into a discussion of these problems here). For instance in a standard 
Kaluza-Klein theory one starts with F being the space of all pseudo­
Riemannian metrics gAB on M (usually with signature (-+++ ... ) ). and 
A - the Einstein-Hilbert action functional 

where R[g] is the scalar curvature of g. A is a (cosmological) cons­
tant. and m=dim M . 

7) Dimensional reduction of a physical system S implies a particular 
choice of a submanifold of the manifold F of field configurations of 
S. a choice usually implemented by a certain "Ansatz" or. as we will 
see. by some constraint equations. While many reasonable submanifolds 
of F can be usually chosen. dimensional reduction (as implied by its 
very name) distinguishes a certain submanifold F~ of F in such a way 
that F~ is isomorphic to a manifold of all field configurations of some 
other physical system S~ living on a manifold M~. with m~=dimM~<m=dimM. 

Example 

Let us take for F the manifold of Riemannian metrics on a product mani­
fold M=M~xR • and let F~ be a submanifold of F consisting of all those 

metrics gAB(X' ~ )' XEM. aER. which are of the form 

where A.B=1.2 ..... m and a. 8=1.2 ..... m~=m-l; g 8(x), A (x) and A(X) are. a a 
respectively. a Riemannian metric. a one-form. and a scalar field on~. 
This is the Ansatz for an m~+l dimensional Kaluza-Klein theory with the 
real line R as internal space. and with a Jordan-Thiry field A(X). 
A still smaller submanifold Ff can be distinguished as consisting of 
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gAB'S of the above form, but with the Jordan-Thierry field frozen to 
a prescribed fixed value: A(x)=l (usually one puts 1=1). We will see 
that the first reduction. from F to F', is consistent with the Einstein 
-Hilbert action functional, while the second one, which historically 
was the first, is not. 

Remark 

It 'shou1d be observed that the above choice of F (or Ff) was possible 
owing to the assumed extra structure carried by the manifold M; in this 
case by the product structure M=M'xR. For a physical understanding of 
the Kaluza-Klein mechanism one has to explain this extra structure too. 
Usually it is assumed that it results from some kind of a "spontaneous 
compactification of extra-dimensions" , the term suggesting an analogy 
to the mechanisms of a "spontaneous magnetisation" etc. 

8) In [14] a general geometrical scheme of the so called "G-invariant 
dimensional reduction" was developed. One starts there with a manifold 
M on which a compact Lie group G acts (say, from the right) by a simple 
(all orbits of the same type) action. One takes then for the field con­
figuration manifold F the space of all Riemannian metrics gAB on M and 
for F' the submanifo1d of all G-invariant metrics. One proves then that 
F' is isomorphic to the manifold of field configurations on M'=M/G (the 
manifold of orbits), where a field configuration on M' is a triplet 
consisting of: a Riemannian metric g Q on M', a principal connection 

A a~ 

(gauge field) Aa in a certain principal bundle P over M', and a mu1tip-
)J 

let of sca1 ar fields Aa6 (a Jordan-Thiry multiplet) on M~ One al so finds 
that the Einstein-Hilbert action Aof9AB ' when redu~ed to F', gives 
a reasonable effective action for the fields g Q' Aa and A Q on M'. 

a~)J a~ 

The effective gauge group, resulting from this kind of dimensional re-
duction, i.e. the structure group of the principal bundle P, is N(H)/H, 
where H is the typical isotropy group of the action of G on M and N(H) 
is the normalizer of H in G. 
The five-dimensional Kaluza-Klein theory with a Jordan-Thiry field is 
a particular example of the above general scheme; in this case the gro­
up U(l) acts on M without fix-points so that G=U(l), H={e}, N(H)/H=G= 
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=u(1), and P=tl is an U(1) principal bundle over W =r~/U(I). 
The general G-invariant dimensional reduction scheme was shown to be 
consistent (for the Einstein-Hilbert action) by the explicit comparing 
of the effective and original field equations [15J. These calculations 
also show that, apart of some exceptional situations, the consistency 
also holds for a noncompact semisimple G and pseudoriemannian metrics. 
Any ad hoc introduced change in the field content (e.g. neglecting some 
of the Jordan-Thiry scalars A, or "improving" the effective Lagrangian 
by neglecting a determinant of A factor, lead in general to a dimensio­
nally reduced theory which is inconsistent with the original one. 

9) The consistency of G-invariant dimensional reduction scheme, at 
least for a compact G, can be also deduced from an interesting paper 
[16J by R.S. Palais, entitled "The Principle of Symmetric Criticality'·2) 
The Author proves there the following remarkable result 

TMorem. (Pr,inciple of Synvnetric Critical ity) Let G be a compact 
Lie group, M a smooth G-manifold, F+M a smooth G-fiber bundle 
over M, and let F be the Banach manifold of sections of F with 
the natural action of G on F by (g4>)(x)=g4>(xg). Let A :F + R be 
a smooth G-invariant function on F. Then the set F' of G-inva­
riant sections of F (i.e. those satisfying (g4»(x)=4>(x) for all 
xEM) is a smooth submanifold of F, and the reduction from F to F' 
is consistent with A i.e. every 4>EF' which is critical point of 
A'=AI F, is automatically a critical point of A in F. 

The Principle applies therefore to the standard Kaluza-Klein theory with 
a compact group G of isometries as discussed in Ref. [14J; indeed pseu­
doriemannian metrics of signature (p,q) can be identified with sections 
of the bundle associated to the frame bund'ie of M via the natural action 
of GL(m) on the coset space GL(m)/O(p,q). The principle applies also to 
Kaluza-Klein theories enlarged by other matter fields, as discussed in 
Ref. [18J. 

2) for an earlier, more intuitive version of this principle see also 
the Coleman's paper [17J. 
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10) A proof of the above principle can be based on the following consi­
derations. let G be a compact lie group acting on a manifold F, and 
let F~ be the submanifold of F consisting of the fix-points of this ac­
tion. Now, if cp E F~ the group G leaves the point cp invariant but acts, 
in general, on a neighbour points. Therefore we have the isotropy rep­
resentation of G on the tangent space TcpF. Denote by Xh, hElie(G), the 
fundamental vector fields for the action of G on F, evidently one has 
Xh(cp)=O for cpEF~. Denote by axh(cp) the linear operators of the isot­
ropy representation of G at cpo let A :F -+- R be a function on F which 
is G-invariant. If then follows from G-invariance of A that, for cpE F~, 

dA vanishes on the range of axh(cp) for all hElie (G). Now, since the 
group G is compact, one can always make TcpF into a Hilbert space so 
that the isotropy representation is unitary and the generators axh(cp) -
selfadjoint. Now, for selfadjoint operators their ranges and kernels 
span the entire space. Thus to prove that cp is a critical point of A 
at cp E F~ it is enough to prove that dA vanishes on the kernel of axh( CP). 

Therefore to prove. that criticality of cP for AIF~ implies criticality 
for A in F it is enough to prove that n{KeraXh(cp):hElieGlcTcp F~. InRef. 
[16] this fact is proven by first endowing F with a G-invariant Rieman­
nian metric and then by observing that given a vector tangent at cp E F~ 
which is invariant under the isotropy representation, it generates 
a point-wise invariant geodesic (thus being contained in r')and so it 
is tangent to '~.It would be interesting to know if the Principle of 
Symmetric Criticality can be generalized to functionals invariant under 
supersymmetri es. 
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